Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113772, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393949

RESUMEN

The mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains several established membrane protein complexes. Here, we report the identification of a mega-complex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far. MIMAS combines proteins of diverse functions from respiratory chain assembly to metabolite transport, dehydrogenases, and lipid biosynthesis but not the large established supercomplexes of the respiratory chain, ATP synthase, or prohibitin scaffold. MIMAS integrity depends on the non-bilayer phospholipid phosphatidylethanolamine, in contrast to respiratory supercomplexes whose stability depends on cardiolipin. Our findings suggest that MIMAS forms a protein-lipid mega-assembly in the mitochondrial inner membrane that integrates respiratory biogenesis and metabolic processes in a multifunctional platform.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Transporte de Electrón , Cardiolipinas/metabolismo
2.
Mol Biol Cell ; 34(13): ar131, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792492

RESUMEN

Located in the central protuberance region of the mitoribosome and mitospecific mL38 proteins display homology to PEBP (Phosphatidylethanolamine Binding Protein) proteins, a diverse family of proteins reported to bind anionic substrates/ligands and implicated in cellular signaling and differentiation pathways. In this study, we have performed a mutational analysis of the yeast mitoribosomal protein MrpL35/mL38 and demonstrate that mutation of the PEBP-invariant ligand binding residues Asp(D)232 and Arg(R)288 impacted MrpL35/mL38's ability to support OXPHOS-based growth of the cell. Furthermore, our data indicate these residues exist in a functionally important charged microenvironment, which also includes Asp(D)167 of MrpL35/mL38 and Arg(R)127 of the neighboring Mrp7/bL27m protein. We report that mutation of each of these charged residues resulted in a strong reduction in OXPHOS complex levels that was not attributed to a corresponding inhibition of the mitochondrial translation process. Rather, our findings indicate that a disconnect exists in these mutants between the processes of mitochondrial protein translation and the events required to ensure the competency and/or availability of the newly synthesized proteins to assemble into OXPHOS enzymes. Based on our findings, we postulate that the PEBP-homology domain of MrpL35/mL38, together with its partner Mrp7/bL27m, form a key regulatory region of the mitoribosome.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Proteínas Ribosómicas/metabolismo , Biosíntesis de Proteínas , Mutación/genética
3.
FEBS Lett ; 597(12): 1579-1594, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37115519

RESUMEN

The extreme N-terminal residues of the mitochondrial ribosomal bL27m proteins reside within the ribosomal peptidyl transferase center (PTC) and are conserved from their bacterial ancestors. Mutation or truncation of the N-terminal region of the yeast Mrp7/bL27m protein did not inhibit protein synthesis but significantly impacted the efficacy of the mitochondrial translational process with respect to yielding proteins competent to assemble into functional oxidative phosphorylation enzymes. The requirement for the N-terminal residues of Mrp7/bL27m to support normal mitotranslation was more apparent under respiratory growth. We demonstrate that the N-terminal region of Mrp7/bL27m impacts the environment of the PTC and speculate the bL27m proteins serve to fine-tune and optimize mitoribosomal activity with respect to the downstream fate of the nascent chain.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Biol Cell ; 33(1): ar7, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731012

RESUMEN

We demonstrate here that mitoribosomal protein synthesis, responsible for the synthesis of oxidative phosphorylation (OXPHOS) subunits encoded by the mitochondrial genome, occurs at high levels during glycolysis fermentation and in a manner uncoupled from OXPHOS complex assembly regulation. Furthermore, we provide evidence that the mitospecific domain of Mrp7 (bL27), a mitoribosomal component, is required to maintain mitochondrial protein synthesis during fermentation but is not required under respiration growth conditions. Maintaining mitotranslation under high-glucose-fermentation conditions also involves Mam33 (p32/gC1qR homologue), a binding partner of Mrp7's mitospecific domain, and together they confer a competitive advantage for a cell's ability to adapt to respiration-based metabolism when glucose becomes limiting. Furthermore, our findings support that the mitoribosome, and specifically the central protuberance region, may be differentially regulated and/or assembled, under the different metabolic conditions of fermentation and respiration. On the basis of our findings, we propose that the purpose of mitotranslation is not limited to the assembly of OXPHOS complexes, but also plays a role in mitochondrial signaling critical for switching cellular metabolism from a glycolysis- to a respiration-based state.


Asunto(s)
Respiración de la Célula/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación/fisiología , Glucosa/metabolismo , Glucólisis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
5.
Cell Rep ; 31(5): 107607, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375044

RESUMEN

The mitochondrial respiratory chain enzymes are organized as individual complexes and supercomplexes, whose biogenesis remains to be fully understood. To disclose the role of the human Hypoxia Inducible Gene Domain family proteins HIGD1A and HIGD2A in these processes, we generate and characterize HIGD-knockout (KO) cell lines. We show that HIGD2A controls and coordinates the modular assembly of isolated and supercomplexed complex IV (CIV) by acting on the COX3 assembly module. In contrast, HIGD1A regulates CIII and CIII-containing supercomplex biogenesis by supporting the incorporation of UQCRFS1. HIGD1A also clusters with COX4-1 and COX5A CIV subunits and, when overexpressed, suppresses the CIV biogenesis defect of HIGD2A-KO cells. We conclude that HIGD1A and HIGD2A have both independent and overlapping functions in the biogenesis of respiratory complexes and supercomplexes. Our data illuminate the existence of multiple pathways to assemble these structures by dynamic HIGD-mediated CIV biogenesis, potentially to adapt to changing environmental and nutritional conditions.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Humanos
6.
J Biol Chem ; 294(46): 17669-17677, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31591265

RESUMEN

Hypoxia-inducible gene domain 1 (HIGD1) proteins are small integral membrane proteins, conserved from bacteria to humans, that associate with oxidative phosphorylation supercomplexes. Using yeast as a model organism, we have shown previously that its two HIGD1 proteins, Rcf1 and Rcf2, are required for the generation and maintenance of a normal membrane potential (ΔΨ) across the inner mitochondrial membrane (IMM). We postulated that the lower ΔΨ observed in the absence of the HIGD1 proteins may be due to decreased proton pumping by complex IV (CIV) or enhanced leak of protons across the IMM. Here we measured the ΔΨ generated by complex III (CIII) to discriminate between these possibilities. First, we found that the decreased ΔΨ observed in the absence of the HIGD1 proteins cannot be due to decreased proton pumping by CIV because CIII, operating alone, also exhibited a decreased ΔΨ when HIGD1 proteins were absent. Because CIII can neither lower its pumping stoichiometry nor transfer protons completely across the IMM, this result indicates that HIGD1 protein ablation enhances proton leak across the IMM. Second, we demonstrate that this proton leak occurs through CIV because ΔΨ generation by CIII is restored when CIV is removed from the cell. Third, the proton leak appeared to take place through an inactive population of CIV that accumulates when HIGD1 proteins are absent. We conclude that HIGD1 proteins in yeast prevent CIV inactivation, likely by preventing the loss of lipids bound within the Cox3 protein of CIV.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Membranas Mitocondriales/química , Proteínas de Saccharomyces cerevisiae/química , Complejo IV de Transporte de Electrones/química , Humanos , Potenciales de la Membrana/genética , Fosforilación Oxidativa , Sustancias Protectoras/química , Bombas de Protones/química , Protones , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
J Biol Chem ; 294(13): 4867-4877, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30683696

RESUMEN

The yeast mitochondrial proteins Rcf1 and Rcf2 are associated with a subpopulation of the cytochrome bc1-cytochrome c oxidase supercomplex and have been proposed to play a role in the assembly and/or modulation of the activity of the cytochrome c oxidase (complex IV, CIV). Yeast mutants deficient in either Rcf1 or Rcf2 proteins can use aerobic respiration-based metabolism for growth, but the absence of both proteins results in a strong growth defect. In this study, using assorted biochemical and biophysical analyses of Rcf1/Rcf2 single and double null-mutant yeast cells and mitochondria, we further explored how Rcf1 and Rcf2 support aerobic respiration and growth. We show that the absence of Rcf1 physically reduces the levels of CIV and diminishes the ability of the CIV that is present to maintain a normal mitochondrial proton motive force (PMF). Although the absence of Rcf2 did not noticeably affect the physical content of CIV, the PMF generated by CIV was also lower than normal. Our results indicate that the detrimental effects of the absence of Rcf1 and Rcf2 proteins on the CIV complex are distinct in terms of CIV assembly/accumulation and additive in terms of the ability of CIV to generate PMF. Thus, the combined absence of Rcf1 and Rcf2 alters both CIV physiology and assembly. We conclude that the slow aerobic growth of the Rcf1/Rcf2 double null mutant results from diminished generation of mitochondrial PMF by CIV and limits the level of CIV activity required for maintenance of the PMF and growth under aerobic conditions.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Consumo de Oxígeno/fisiología , Fuerza Protón-Motriz/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Complejo IV de Transporte de Electrones/genética , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Biol Cell ; 28(24): 3489-3499, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28931599

RESUMEN

Mitoribosomes perform the synthesis of the core components of the oxidative phosphorylation (OXPHOS) system encoded by the mitochondrial genome. We provide evidence that MrpL35 (mL38), a mitospecific component of the yeast mitoribosomal central protuberance, assembles into a subcomplex with MrpL7 (uL5), Mrp7 (bL27), and MrpL36 (bL31) and mitospecific proteins MrpL17 (mL46) and MrpL28 (mL40). We isolated respiratory defective mrpL35 mutant yeast strains, which do not display an overall inhibition in mitochondrial protein synthesis but rather have a problem in cytochrome c oxidase complex (COX) assembly. Our findings indicate that MrpL35, with its partner Mrp7, play a key role in coordinating the synthesis of the Cox1 subunit with its assembly into the COX enzyme and in a manner that involves the Cox14 and Coa3 proteins. We propose that MrpL35 and Mrp7 are regulatory subunits of the mitoribosome acting to coordinate protein synthesis and OXPHOS assembly events and thus the bioenergetic capacity of the mitochondria.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Fosforilación Oxidativa , Biosíntesis de Proteínas , Conformación Proteica , Elementos Estructurales de las Proteínas , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
9.
J Biol Chem ; 292(13): 5216-5226, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28167530

RESUMEN

The yeast Rcf1 protein is a member of the conserved family of proteins termed the hypoxia-induced gene (domain) 1 (Hig1 or HIGD1) family. Rcf1 interacts with components of the mitochondrial oxidative phosphorylation system, in particular the cytochrome bc1 (complex III)-cytochrome c oxidase (complex IV) supercomplex (termed III-IV) and the ADP/ATP carrier proteins. Rcf1 plays a role in the assembly and modulation of the activity of complex IV; however, the molecular basis for how Rcf1 influences the activity of complex IV is currently unknown. Hig1 type 2 isoforms, which include the Rcf1 protein, are characterized in part by the presence of a conserved motif, (Q/I)X3(R/H)XRX3Q, termed here the QRRQ motif. We show that mutation of conserved residues within the Rcf1 QRRQ motif alters the interactions between Rcf1 and partner proteins and results in the destabilization of complex IV and alteration of its enzymatic properties. Our findings indicate that Rcf1 does not serve as a stoichiometric component, i.e. as a subunit of complex IV, to support its activity. Rather, we propose that Rcf1 serves to dynamically interact with complex IV during its assembly process and, in doing so, regulates a late maturation step of complex IV. We speculate that the Rcf1/Hig1 proteins play a role in the incorporation and/or remodeling of lipids, in particular cardiolipin, into complex IV and. possibly, other mitochondrial proteins such as ADP/ATP carrier proteins.


Asunto(s)
Secuencias de Aminoácidos/genética , Análisis Mutacional de ADN , Complejo IV de Transporte de Electrones/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Cardiolipinas/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Biochim Biophys Acta ; 1863(7 Pt A): 1643-52, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27091403

RESUMEN

Here we identified a hydrophobic 6.4kDa protein, Cox26, as a novel component of yeast mitochondrial supercomplex comprising respiratory complexes III and IV. Multi-dimensional native and denaturing electrophoretic techniques were used to identify proteins interacting with Cox26. The majority of the Cox26 protein was found non-covalently bound to the complex IV moiety of the III-IV supercomplexes. A population of Cox26 was observed to exist in a disulfide bond partnership with the Cox2 subunit of complex IV. No pronounced growth phenotype for Cox26 deficiency was observed, indicating that Cox26 may not play a critical role in the COX enzymology, and we speculate that Cox26 may serve to regulate or support the Cox2 protein. Respiratory supercomplexes are assembled in the absence of the Cox26 protein, however their pattern slightly differs to the wild type III-IV supercomplex appearance. The catalytic activities of complexes III and IV were observed to be normal and respiration was comparable to wild type as long as cells were cultivated under normal growth conditions. Stress conditions, such as elevated temperatures resulted in mild decrease of respiration in non-fermentative media when the Cox26 protein was absent.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Catálisis , Disulfuros/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/aislamiento & purificación , Electroforesis , Estabilidad de Enzimas , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peso Molecular , Consumo de Oxígeno , Unión Proteica , Desnaturalización Proteica , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Temperatura
11.
Mol Cell Biol ; 32(8): 1363-73, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22310663

RESUMEN

We report that Rcf1 (formerly Aim31), a member of the conserved hypoxia-induced gene 1 (Hig1) protein family, represents a novel component of the yeast cytochrome bc(1)-cytochrome c oxidase (COX) supercomplex. Rcf1 (respiratory supercomplex factor 1) partitions with the COX complex, and evidence that it may act as a bridge to the cytochrome bc(1) complex is presented. Rcf1 interacts with the Cox3 subunit and can do so prior to their assembly into the COX complex. A close proximity of Rcf1 and members of the ADP/ATP carrier (AAC) family was also established. Rcf1 displays overlapping function with another Hig1-related protein, Rcf2 (formerly Aim38), and their joint presence is required for optimal COX enzyme activity and the correct assembly of the cytochrome bc(1)-COX supercomplex. Rcf1 and Rcf2 can independently associate with the cytochrome bc(1)-COX supercomplex, indicating that at least two forms of this supercomplex exist within mitochondria. We provide evidence that the association with the cytochrome bc(1)-COX supercomplex and regulation of the COX complex are a conserved feature of Hig1 family members. Based on our findings, we propose a model where the Hig1 proteins regulate the COX enzyme activity through Cox3 and associated Cox12 protein, in a manner that may be influenced by the neighboring AAC proteins.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Activación Enzimática , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Modelos Biológicos , Unión Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
12.
EMBO Rep ; 12(9): 950-5, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21779004

RESUMEN

Mitochondrial ribosomal protein 20 (Mrp20) is a component of the yeast mitochondrial large (54S) ribosomal subunit and is homologous to the bacterial L23 protein, located at the ribosomal tunnel exit site. The carboxy-terminal mitochondrial-specific domain of Mrp20 was found to have a crucial role in the assembly of the ribosomes. A new, membrane-bound, ribosomal-assembly subcomplex composed of known tunnel-exit-site proteins, an uncharacterized ribosomal protein, MrpL25, and the mitochondrial peroxiredoxin (Prx), Prx1, accumulates in an mrp20ΔC yeast mutant. Finally, data supporting the idea that the inner mitochondrial membrane acts as a platform for the ribosome assembly process are discussed.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/genética , Eliminación de Secuencia
13.
Eukaryot Cell ; 8(11): 1792-802, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19783770

RESUMEN

The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Mitocondrias/química , Mitocondrias/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Oxidación-Reducción , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
14.
Methods Enzymol ; 456: 191-208, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19348890

RESUMEN

The enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS) are coassembled into higher ordered supercomplexes within the mitochondrial inner membrane. The cytochrome bc(1)-cytochrome c oxidase (COX) supercomplex is formed by the coassociation of the two electron transport chain complexes, the cytochrome bc(1) (cytochrome c reductase) and the COX complex. Recent evidence indicates that a diversity in the populations of the cytochrome bc(1)-COX supercomplexes exists within the mitochondria, because different subpopulations of this supercomplex have been shown to further interact with distinct partner complexes (e.g., the TIM23 machinery and also the Shy1/Cox14 proteins). By use of native gel electrophoresis and affinity purification approaches, the abundant ADP/ATP carrier protein (AAC) isoform in the yeast Saccharomyces cerevisiae, the Aac2 isoform, has recently been found to also exist in physical association with the cytochrome bc(1)-COX supercomplex and its associated TIM23 machinery. The AAC proteins play a central role in cellular metabolism, because they facilitate the exchange of ADP and ATP across the mitochondrial inner membrane. The method used to analyze the cytochrome bc(1)-COX-AAC supercomplex and to affinity purify the Aac2 isoform and its associating proteins from S. cerevisiae mitochondria will be outlined in this chapter.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografía de Afinidad , Detergentes/química , Digitonina/química , Electroforesis en Gel de Poliacrilamida
15.
J Bioenerg Biomembr ; 40(5): 411-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18839289

RESUMEN

Accumulating evidence indicates that the enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS) are co-assembled into higher-ordered supercomplexes within the mitochondrial inner membrane. This review will focus largely on the OXPHOS supercomplexes of the yeast Saccharomyces cerevisiae. The recent evidence to indicate that diversity in the populations of the cytochrome bc (1)-COX supercomplexes exist shall be outlined. In addition, the existence of dimeric/oligomeric F(1)F(o)-ATP synthase complexes and their proposed role in establishment of the cristae architecture of the inner mitochondrial membrane shall also be discussed.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/enzimología , Fosforilación Oxidativa , Saccharomyces cerevisiae/enzimología , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Membranas Intracelulares/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Biológicos , Modelos Moleculares
16.
Mol Biol Cell ; 19(9): 3934-43, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18614795

RESUMEN

The ADP/ATP carrier (AAC) proteins play a central role in cellular metabolism as they facilitate the exchange of ADP and ATP across the mitochondrial inner membrane. We present evidence here that in yeast (Saccharomyces cerevisiae) mitochondria the abundant Aac2 isoform exists in physical association with the cytochrome c reductase (cytochrome bc(1))-cytochrome c oxidase (COX) supercomplex and its associated TIM23 machinery. Using a His-tagged Aac2 derivative and affinity purification studies, we also demonstrate here that the Aac2 isoform can be affinity-purified with other AAC proteins. Copurification of the Aac2 protein with the TIM23 machinery can occur independently of its association with the fully assembled cytochrome bc(1)-COX supercomplex. In the absence of the Aac2 protein, the assembly of the cytochrome bc(1)-COX supercomplex is perturbed, whereby a decrease in the III(2)-IV(2) assembly state relative to the III(2)-IV form is observed. We propose that the association of the Aac2 protein with the cytochrome bc(1)-COX supercomplex is important for the function of the OXPHOS complexes and for the assembly of the COX complex. The physiological implications of the association of AAC with the cytochrome bc(1)-COX-TIM23 supercomplex are also discussed.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Translocasas Mitocondriales de ADP y ATP/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Apoptosis , Potenciales de la Membrana , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxígeno/química , Fenotipo , Fosforilación , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
17.
J Biol Chem ; 283(11): 6677-86, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18187422

RESUMEN

The enzyme complexes involved in mitochondrial oxidative phosphorylation are organized into higher ordered assemblies termed supercomplexes. Subunits e and g (Su e and Su g, respectively) are catalytically nonessential subunits of the F1F0-ATP synthase whose presence is required to directly support the stable dimerization of the ATP synthase complex. We report here that Su g and Su e are also important for securing the correct organizational state of the cytochrome bc1-cytochrome oxidase (COX) supercomplex. Mitochondria isolated from the Delta su e and Delta su g null mutant strains exhibit decreased levels of COX enzyme activity but appear to have normal COX subunit protein levels. An altered stoichiometry of the cytochrome bc1-COX supercomplex was observed in mitochondria deficient in Su e and/or Su g, and a perturbation in the association of Cox4, a catalytically important subunit of the COX complex, was also detected. In addition, an increase in the level of the TIM23 translocase associated with the cytochrome bc1-COX supercomplex is observed in the absence of Su e and Su g. Together, our data highlight that a further level of complexity exists between the oxidative phosphorylation supercomplexes, whereby the organizational state of one complex, i.e. the ATP synthase, may influence that of another supercomplex, namely the cytochrome bc1-COX complex.


Asunto(s)
Complejo III de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/química , Proteínas de Transporte de Membrana/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Cromatografía en Gel , Dimerización , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Oxígeno/química , Fosforilación , Estructura Terciaria de Proteína
18.
Biochemistry ; 47(7): 1910-7, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18220416

RESUMEN

F1Fo-ATP synthase is a large multiprotein complex, including at least 10 subunits in the membrane-bound Fo-sector. One of these Fo proteins is subunit e (Su e), involved in the stable dimerization of F1Fo-ATP synthase, and required for the establishment of normal cristae membrane architecture. As a step toward enabling structure-function studies of the Fo-sector, the Su e transmembrane region was structurally characterized in micelles. Based on a series of NMR and CD (circular dichroism) studies, a structural model of the Su e/micelle complex was constructed, indicating Su e is largely helical, and emerges from the micelle with Arg20 near the phosphate head groups. Su e only adopts this folded conformation in the context of the micelle, and is essentially disordered in DMSO, water or trifluoroethanol/water. Within the micelle the C-terminal Ala10-Arg20 stretch is helical, while the region N-terminal may be transiently helical, based on negative CSI (chemical shift index) values. The Ala10-Arg20 helix contains the G14XXXG18 motif, which has been proposed to play an important role in dimer formation with another protein from the Fo-sector. The Gly on the C-terminal end of this motif (Gly18) is slightly more mobile than the more buried Gly14, based on NMR order parameter measurements (Gly14 S2 = 0.950; Gly18 S2 = 0.895). Only one Su e transmembrane peptide is bound per micelle, and micelles are 22-23 A in diameter, composed of 51 +/- 4 dodecylphosphocholine detergent molecules. Although there is no evidence for Su e homodimerization via the transmembrane domain, potentially synergistic roles for N-terminal (membrane) and C-terminal (soluble) domain interactions may still occur. Furthermore, the presence of a buried charged residue (Arg7) suggests there may be interactions with other Fo-sector protein(s) that stabilize this charge, and possibly drive the folding of the N-terminal 9 residues of the transmembrane domain.


Asunto(s)
Micelas , ATPasas de Translocación de Protón/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Conformación Proteica
20.
Mol Biol Cell ; 18(5): 1897-908, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17344477

RESUMEN

The yeast Oxa1 protein is involved in the biogenesis of the mitochondrial oxidative phosphorylation (OXPHOS) machinery. The involvement of Oxa1 in the assembly of the cytochrome oxidase (COX) complex, where it facilitates the cotranslational membrane insertion of mitochondrially encoded COX subunits, is well documented. In this study we have addressed the role of Oxa1, and its sequence-related protein Cox18/Oxa2, in the biogenesis of the F(1)F(o)-ATP synthase complex. We demonstrate that Oxa1, but not Cox18/Oxa2, directly supports the assembly of the membrane embedded F(o)-sector of the ATP synthase. Oxa1 was found to physically interact with newly synthesized mitochondrially encoded Atp9 protein in a posttranslational manner and in a manner that is not dependent on the C-terminal, matrix-localized region of Oxa1. The stable manner of the Atp9-Oxa1 interaction is in contrast to the cotranslational and transient interaction previously observed for the mitochondrially encoded COX subunits with Oxa1. In the absence of Oxa1, Atp9 was observed to assemble into an oligomeric complex containing F(1)-subunits, but its further assembly with subunit 6 (Atp6) of the F(o)-sector was perturbed. We propose that by directly interacting with newly synthesized Atp9 in a posttranslational manner, Oxa1 is required to maintain the assembly competence of the Atp9-F(1)-subcomplex for its association with Atp6.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Genes Fúngicos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Complejos Multiproteicos/química , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación Oxidativa , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...